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Symbiodinolide is a polyol macrolide isolated from the marine dinoflagellate Symbiodinium sp. in
2007. The C14–C24 fragment of symbiodinolide possessing the 17R/18R/21R absolute configuration,
which was obtained as one of the degraded products of symbiodinolide, was synthesized stereoselec-
tively from cis-2-butene-1,4-diol. The detailed comparison of the synthetic product with the degraded
product in the spectroscopic data confirmed that the stereostructure of the C14–C24 fragment was
17R, 18R, and 21R.

� 2010 Elsevier Ltd. All rights reserved.
Symbiodinolide (1), a novel polyol compound, has been recently
isolated from the marine dinoflagellate Symbiodinium sp., which
exhibits a voltage-dependant N-type Ca2+ channel-opening activity
at 7 nM and COX-1 inhibitory effect at 2 lM (Fig. 1).1 The planar
structure and partial stereochemistry of 1 were elucidated by
spectroscopic analysis1 and chemical synthesis.2 Previously, we
degraded 1 via the cross-metathesis with ethylene using Hov-
eyda–Grubbs second generation catalyst3 to give the C14–C24
fragment 2 (Scheme 1).4 The absolute stereochemistries at C17
and C21 positions were determined to be 17R and 21R by applying
the modified Mosher method5 to bis-(S) and (R)-MTPA esters 3 and
4 derived from the degraded product 2. The absolute configuration
at C18 position was assigned to be 18R on the basis of J-based con-
figuration analysis6 and NOE correlations in 1. Herein, we report
the stereoselective synthesis of (17R,18R,21R)-diol possessing the
proposed stereostructure of the degraded product 2, which has re-
sulted in the confirmation of the absolute configuration of the
C14–C24 fragment.

The asymmetric aldol reaction of known aldehyde 5, which was
easily prepared from cis-2-butene-1,4-diol,7 and propionyl oxazoli-
dinethione 6 was performed to give Evans type syn aldol adduct 7
as a single stereoisomer (Scheme 2).8 The absolute stereochemistry
of the resulting chiral center at the C17 position was determined
by the modified Mosher method.5 Alcohol 7 was transformed to
lactone 9 for the elucidation of the absolute configuration at the
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C18 position. Thus, reduction of 7 with DIBALH followed by Wittig
reaction with Ph3P@CHCO2Me gave a,b-unsaturated ester 8. Two
double bonds of 8 were hydrogenated with Pd-C, and subsequent
DIBALH reduction provided the corresponding diol. Treatment of
the diol with TEMPO/NaClO afforded lactone 9.9 The observed
NOEs H-17/H-20a and CH3-18/H-20b as shown with the arrows
confirmed the absolute stereochemistry at the C18 position of 9
to be R. Therefore, the absolute configuration of 7 was elucidated
to be 17R and 18S.

Further transformation of 7 to the (17R,18R,21R)-diol 2 is de-
scribed in Scheme 3. Removal of the oxazolidinethione chiral auxil-
iary of 7 by transamination with Me3Al/MeO(Me)NH�HCl10 followed
by Dess–Martin oxidation11 and the diastereoselective reduction12

yielded alcohol 10 as a sole product.13 The resulting hydroxy group
of 10 was protected with TBSOTf/2,6-lutidine to give the corre-
sponding silyl ether. Reduction of the resulting amide to aldehyde
with DIBALH and subsequent two-carbon Wittig homologation with
Ph3P@CHCO2Me afforded a,b-unsaturated ester 11 in 93% yield by
three steps. Reduction of 11 to allylic alcohol with DIBALH followed
Scheme 1. Cross-metathesis degradation of symbiodinolide (1) with ethylene.

http://dx.doi.org/10.1016/j.tetlet.2010.03.014
mailto:takamura@cc.okayama-u.ac.jp
http://www.sciencedirect.com/science/journal/00404039
http://www.elsevier.com/locate/tetlet


Figure 1. Structure of symbiodinolide (1).
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by Parikh–Doering oxidation14 gave aldehyde 12. Aldehyde 12 was
subjected to the asymmetric allylation reported by Keck et al.15 to
provide homoallylic alcohol 13 as a sole product.13 Treatment of
13 with TBSOTf/2,6-lutidine gave the corresponding silyl ether, fol-
lowed by selective removal of the primary TBS moiety to yield the
corresponding allylic alcohol. Parikh–Doering oxidation14 of the
allylic alcohol gave a,b-unsaturated aldehyde 14. Methyl acetaliza-
tion and deprotection of the silyl protective groups in one-pot were
Scheme 2. Synthesis and structural determination of 7.
 Scheme 3. Synthesis of 2.
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achieved with TiCl4 in MeOH to provide (17R,18R,21R)-diol 2.16 The
spectroscopic data of the synthetic product 2 was identical to those
of the degraded C14–C24 fragment reported previously.4b,17

In conclusion, we synthesized (17R,18R,21R)-diol 2 in 16 steps
from commercially available cis-2-butene-1,4-diol. The spectro-
scopic data of the synthetic product 2 matched those of the degraded
C14–C24 fragment obtained from symbiodinolide (1), which con-
firmed that the absolute stereochemistry of the C14–C24 fragment
was 17R, 18R, and 21R. Further structural and synthetic studies on
1 are underway in our laboratories.
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